Journal of Organometallic Chemistry, 367 (1989) 101–106 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands JOM 09790

Synthesis of some new cationic seven-coordinate complexes of molybdenum(II) and tungsten(II)

Paul K. Baker *, Michael Bamber and Gordon W. Rogers

Department of Chemistry, University College of North Wales, Bangor, Gwynedd LL57 2UW (Great Britain) (Received June 27th, 1988)

Abstract

Equimolar quantities of $[MI_2(CO)_3(NCMe)_2]$ (M = Mo or W) react with L $(L = PPh_3, AsPh_3 \text{ or } SbPh_3)$ in CH_2Cl_2 at room temperature to give the complexes $[MI_2(CO)_3(NCMe)L]$, which react in situ with one equivalent of N \cap N {N \cap N = 2,2'-bipyridyl, 1,10-phenanthroline or 1,2-phenylenediamine (for M = W, L = PPh_3, for M = Mo, L = SbPh_3)} or two equivalents of pyridine (py) (for L = PPh_3 and AsPh_3) to give good yields of the cationic seven-coordinate complexes $[MI(CO)_3(N \cap N)L]I$ or $[MI(CO)_3(py)_2L]I$. The ionic nature of these complexes was confirmed by the reaction of $[MoI(CO)_3(bipy)(PPh_3)]I$ (prepared in situ) with Na[BF₄] in CH₂Cl₂/MeOH to give the tetrafluoroborate salt $[MoI(CO)_3(bipy)(P-Ph_3)][BF_4]$. Reaction of $[MoI_2(CO)_3(py)_2(PPh_3)]$ with an equimolar amount of py affords the iodide displaced product $[MoI(CO)_3(py)_2(PPh_3)]I$.

Introduction

Cationic seven-coordinate complexes have attracted considerable interest in recent years. For example, Connor and co-workers [1] have described the synthesis of the dicationic compounds $[Mo(CO)_2(NCMe)(N^N)_2][BF_4]_2$ $(N^N = 2,2'-bipyridyl or 1,10-phenanthroline), which are prepared by oxidation of the zero-valent complexes <math>[Mo(CO)_2(N^N)_2]$ with Ag[BF_4] in acetonitrile; the complexes $[Mo(CO)_2(NCMe)(N^N)_2][BF_4]_2$ show a wide range of reactions [2-4]. Lippard and co-workers [5-13] and Walton and co-workers [14-16] have synthesised and studied the chemistry of cationic isonitrile seven-coordinate complexes of the types $[MX(CNR)_6]^+$ or $[M(CNR)_7]^{2+}$ (M = Mo or W).

In recent years we have been studying the reactions of the versatile seven-coordinate compounds $[MI_2(CO)_3(NCMe)_2]$ (M = Mo or W), which are prepared by treating the zero-valent compounds $[M(CO)_3(NCMe)_3]$ with an equimolar quantity of I₂ in acetonitrile at 0°C [17]. In this paper we describe a simple high yield preparation of some new cationic seven-coordinate complexes derived from $[MI_2(CO)_3(NCMe)_2]$.

Results and discussion

The complexes $[MI_2(CO)_3(NCMe)_2]$ (M = Mo or W) react with one equivalent of L (L = PPh₃, AsPh₃ or SbPh₃) to give the substituted products $[MI_2(CO)_3]$ (NCMe)L], which when treated in situ with an equimolar quantity of (N^N) $\{N \cap N = 2, 2'$ -bipyridyl, 1,10-phenanthroline or 1,2-phenylenediamine (for M = W, $L = PPh_3$, for M = Mo, $L = SbPh_3$ or two equivalents of pyridine (py) (for $L = PPh_3$ and AsPh_3 only) afford the new cationic complexes [MI(CO)₃(N \cap N)L]I (1-14) or $[MI(CO)_3(py)_2L]I(15-18)$. The complex $[MoI(CO)_3(bipy)(PPh_3)]I$ reacts in situ with an equimolar quantity of Na[BF₄] in CH₂Cl₂/MeOH (1/1 mixture) to give the tetrafluoroborate salt $[MoI(CO)_3(bipy)(PPh_3)][BF_4]$ (19). The compounds 1-19 have been characterised by elemental analysis (C, H and N) (Table 1), infrared spectroscopy, and in selected cases by ¹H NMR spectroscopy (see Experimental). The magnetic susceptibilities of the complexes 1-19 show the complexes to be diamagnetic, which would be expected for coordinatively saturated seven-coordinate compounds of molybdenum(II) and tungsten(II). The bispyridine complex [Mol- $(CO)_{3}(py)_{2}(PPh_{3})$]I · CH₂Cl₂ (15) was shown to be a dichloromethane solvate from repeated elemental analyses and ¹H NMR spectroscopy (see Experimental). The complexes 1-19 are moderately soluble in CH₂Cl₂ or CHCl₃, but they are much more soluble in acetone. They are insoluble in diethyl ether and hydrocarbon solvents, as expected for ionic compounds. The compounds containing bidentate ligands 1-14 are considerably more stable than the bispyridine compounds 15-18 probably owing to the chelate effect [18].

The reactions of $[MI_2(CO)_3(NCMe)_2]$ with L followed by either N N or 2py's are likely to proceed via successive dissociative substitutions of the two acetonitrile ligands and iodide displacement, to give eventually the cationic compounds $[MI(CO)_3(N^N)L]I$ or $[MI(CO)_3(py)_2L]I$, since the compounds $[MI_2(CO)_3(NCMe)_2]$ and $[MI_2(CO)_3(NCMe)L]$ [19] are coordinatively saturated and highly crowded. It is noteworthy that the reaction of $[MoI_2(CO)_3(py)(PPh_3)]$ [20] with an equimolar quantity of py in CH_2Cl_2 also gives the iodide displaced product $[MoI(CO)_3(py)_2(PPh_3)]I$ (see Experimental). Iodide is the most easily displaced ligand in the series $[MX_2(CO)_3L_2]$ (X = Cl, Br or I), and so this facile displacement of I^- from $[MI_2(CO)_3(py)L]$ would be expected.

The infrared spectra of 1–19 all show three carbonyl bands in the 2000 cm⁻¹ region, with similar patterns to those for other seven-coordinate complexes of molybdenum(II) and tungsten(II) of the type $[MX_2(CO)_3L_2]$ [21–31]. The infrared spectrum (KBr disc) of the complex $[MoI(CO)_3(bipy)(PPh_3)][BF_4]$ (19) also showed the expected broad bands at $\nu(BF) \approx 1016$ cm⁻¹ and a strong sharp band at 529 cm⁻¹ due to the tetrafluoroborate anion [32]. It is likely that the structures of $[MI(CO)_3(N^N)L]I$ or $[MI(CO)_3(py)_2L]I$ are capped octahedral, since other seven-coordinate carbonyl complexes with similar infrared spectral properties exhibit this geometry [33]. Furthermore the crystal structure of the dicationic complex $[Mo(CNEt)_3(bipy)_2][BF_4]_2$ has been determined [34], and shows it to have capped octahedral geometry. Several unsuccessful attempts were made to grow single crystals of some of the cationic seven-coordinate complexes 1-19 described in this paper.

Table 1

Physical and analytical data for the complexes $[MI(CO)_3(N \cap N)L]I$, $[MI(CO)_3(py)_2L]I$ and $[MoI(CO)_3(bipy)(PPh_3)][BF_4]$

Complex	Colour	Yield (%)	Analysis (Found)(calcd.)(%))		
			C	Н	N
[MoI(CO) ₃ (bipy)(PPh ₃)]I (1)	Orange	45	43.6	2.8	3.0
	C C		(43.7)	(2.9)	(3.3)
[WI(CO) ₃ (bipy)(PPh ₃)]I (2)	Brown	87	39.2	2.8	3.0
			(39.6)	(2.7)	(3.0)
[MoI(CO) ₃ (bipy)(AsPh ₃)]I (3)	Dark-	86	41.9	2.7	3.2
	brown		(41.5)	(2.8)	(3.1)
$[WI(CO)_3(bipy)(AsPh_3)]I(4)$	Orange	86	37.4	2.4	2.8
			(37.8)	(2.5)	(2.9)
[MoI(CO) ₃ (bipy)(SbPh ₃)]I (5)	Dark-	42	40.0	2.6	2.8
	brown		(39.5)	(2.7)	(3.0)
[WI(CO) ₃ (bipy)(SbPh ₃)]I (6)	Orange	75	35.8	2.3	2.7
			(36.1)	(2.4)	(2.7)
$[MoI(CO)_3(phen)(PPh_3)I]$ (7)	Dark- brown	85	45.3	3.2	3.0
			(45.2)	(3.3)	(3.2)
[WI(CO) ₃ (phen)(PPh ₃)]I (8)	Brown	85	40.7	2.9	2.8
			(41.1)	(2.8)	(2.9)
$[MoI(CO)_3(phen)(AsPh_3)]I(9)$	Dark-	. 76 wn	42.9	3.0	3.0
	brown		(43.1)	(2.9)	(3.0)
$[WI(CO)_3(phen)(AsPh_3)]I(10)$	Orange	89	39.8	2.4	2.3
			(39.3)	(2.7)	(2.8)
$[MoI(CO)_3(phen)(SbPh_3)]I(11)$	Dark- brown	58	40.6	2.6	2.9
			(41.0)	(2.8)	(2.9)
$[WI(CO)_3(phen)(SbPh_3)]I (12)$	Orange	90	37.4	2.2	2.5
			(37.6)	(2.6)	(2.7)
[WI(CO) ₃ (diam)(PPh ₃)]I (13)	Brown	81	36.3	2.8	2.8
			(36.3)	(2.6)	(3.1)
[MoI(CO) ₃ (diam)(SbPh ₃)]I (14)	Brown	69	35.5	3.0	3.3
			(36.2)	(2.6)	(3.1)
$[Mol(CO)_{3}(py)_{2}(PPh_{3})]I \cdot CH_{2}Cl_{2}$ (15)	Brown	53	41.3	3.0	2.9
			(40.9)	(2.9)	(3.0)
[WI(CO) ₃ (py) ₂ (PPh ₃)]I (16)	Light-	87	39.4	2.8	3.4
	brown		(39.5)	(2.7)	(3.0)
[MoI(CO) ₃ (py) ₂ (AsPh ₃)]I (17)	Brown	92	41.8	3.1	3.0
			(41.4)	(2.8)	(3.1)
[WI(CO) ₃ (py) ₂ (AsPh ₃)]I (18)	Brown	47	37.2	2.1	2.3
			(37.8)	(2.5)	(2.8)
[MoI(CO) ₃ (bipy)(PPh ₃)][BF ₄] (19)	Orange	56	46.3	2.9	3.0
			(45.9)	(3.3)	(3.5)

The complexes $[MI(CO)_3(N^N)L]I$ were refluxed in CH_2Cl_2 or $CHCl_3$ to attempt to get reattack of the iodide to obtain neutral complexes of the type $[MI_2(CO)_2(N^N)L]$. These reactions were unsuccessful however, and only decomposition products were isolated.

Experimental

All reactions were carried out under nitrogen by Schlenk line techniques. The compounds $[MI_2(CO)_3(NCMe)_2](M = Mo \text{ or } W)$ were prepared by the published

method [17], and all chemicals were purchased from commercial sources except for $[Mo(CO)_6]$, which was kindly donated by Amax Speciality Metals limited. Elemental analyses were carried out by Mr. E. Lewis (UCNW) on a Carlo Erba elemental analyser MOD 1106. IR spectra were recorded as $CHCl_3$ thin films between NaCl plates on a Perkin–Elmer 1430 ratio recording infrared spectrophotometer. ¹H NMR spectra were recorded on either a Jeol FX 60 MHz or a Bruker AC250 CPMAS NMR spectrometer, chemical shifts are relative to internal tetramethylsilane. Magnetic susceptibility measurements were recorded on a Johnson–Matthey Magnetic Susceptibility balance.

Preparation of [MoI(CO)₃(bipy)(PPh₃)]I (1)

 $[MoI_2(CO)_3(NCMe)_2]$ (0.5 g, 0.969 mmol) was dissolved in degassed CH_2Cl_2 (15 cm³) with stirring under a stream of nitrogen and PPh₃ (0.254 g, 0.969 mmol) was added with continued stirring. After 1 min bipy (0.151 g, 0.969 mmol) was added, and the mixture was stirred for a further 5 min. Dropwise addition of diethyl ether caused complete precipitation of the orange cationic complex [MoI(CO)₃-(bipy)(PPh₃)]I (1), which was recrystallised from CH_2Cl_2/Et_2O (yield of pure product 0.37 g, 45%).

Similar reactions of $[MI_2(CO)_3(NCMe)_2]$ with an equimolar quantity of L $(L = PPh_3, AsPh_3 \text{ or } SbPh_3)$ to give $[MI_2(CO)_3(NCMe)L]$ followed by an in situ reaction with one equivalent of $N \cap N$ { $N \cap N = 2,2'$ -bipyridyl, 1,10-phenanthroline or 1,2-phenylenediamine (for M = W, $L = PPh_3$, for M = Mo, $L = SbPh_3$)} gave $[MI(CO)_3(N \cap N)L]I$ (2–14) (see Table 1 for colours and yields). Reaction times for $[MI_2(CO)_3(NCMe)_2] + L \rightarrow [MI_2(CO)_3(NCMe)L]$ and $N \cap N \rightarrow [MI(CO)_3(N \cap N)L]I$: (1) PPh₃, 1 min, bipy, 5 min; (3) AsPh₃, 3 min, bipy 5 min; (5) SbPh₃, 5 min, bipy, 5 min. Similar times were recorded for the analogous complexes 2, 4 and 6–14.

IR { ν (C=O) cm⁻¹} spectral data: (1) 2010, 1975 and 1925; (2) 2005, 1960 and 1940; (3) 2015, 1960 and 1915; (4) 2005, 1945 and 1900; (5) 2005, 1975 and 1923; (6) 2005, 1950 and 1900; (7) 2005, 1960 and 1940; (8) 2005, 1940 and 1920; (9) 2005, 1955 and 1930; (10) 2005, 1940 and 1885; (11) 2010, 1960 and 1940; (12) 2005, 1945 and 1915; (13) 2010, 1955 and 1930; (14) 2020, 1965 and 1940.

¹H NMR (CDCl₃, +20 °C): (1) 9.62 (m, 2H), 9.17 (m, 2H), 8.71 (m, 2H), 8.17 (m, 2H), 7.48–7.80 (m, 15H, Ph). (2) 9.68 (d, 2H), 9.2 (d, 2H), 8.38 (m, 2H), 8.14 (m, 2H), 7.4–7.7 (m, 15H, Ph) (3) 9.34 (m, 2H), 8.33 (m, 2H), 8.12 (m, 2H), 7.62 (m, 2H) 7.25–7.45 (m, 15H, Ph). (7) 9.9 (m, 2H), 9.68 (m, 2H), 8.6 (m, 2H), 8.12 (m, 2H), 7.4–7.73 (m, 15H, Ph). (8) 9.48 (m, 2H), 9.69 (m, 2H), 8.78 (m, 2H), 8.14 (m, 2H), 7.42–7.72 (m, 15H, Ph). (12) 8.27 (m, 4H), 8.17 (m, 4H), 7.3–7.64 (m, 15H, Ph).

Preparation of $[MoI(CO)_3(py)_2(PPh_3)]I \cdot CH_2Cl_2$ (15)

 $[MoI_2(CO)_3(NCMe)_2]$ (0.5 g, 0.969 mmol) was dissolved in CH₂Cl₂ (15 cm³) with stirring under a stream of dry nitrogen and PPh₃ (0.254 g, 0.969 mmol) was added with continued stirring. After 1 min, py (0.16 cm³, 1.94 mmol) was added, and the mixture stirred for a further 5 min. Dropwise addition of diethyl ether caused complete precipitation of the brown crystalline cationic complex $[MoI(CO)_3(py)_2(PPh_3)]I \cdot CH_2Cl_2$ (15), which was recrystallised from $CH_2Cl_2/$ Et₂O (yield of pure product = 0.48 g, 53%).

Similar reactions of $[MI_2(CO)_3(NCMe)_2]$ with an equimolar quantity of L $(L = PPh_3 \text{ or } AsPh_3)$ to give $[MI_2(CO)_3(NCMe)L]$, followed by an in situ reaction

with two equivalents of pyridine gave $[MI(CO)_3(py)_2L]I$ (16–18) (see Table 1 for colours and yields). Reaction times for $[MI_2(CO)_3-(NCMe)_2] + L \rightarrow [MI_2(CO)_3-(NCMe)_1]$ and $2py \rightarrow [MI(CO)_3(py)_2L]I$: (15) PPh₃, 1 min; 2 py, 5 min; (16) AsPh₃, 3 min; 2py, 5 min. Similar times were recorded for the tungsten complexes 17 and 18. IR { $\nu(C\equiv O) \text{ cm}^{-1}$ } spectral data: (15) 2010, 1945 and 1925; (16) 2010, 1940 and 1900; (17) 2000, 1960 and 1920; (18) 2005, 1930 and 1910. ¹H NMR (CDCl₃, +20°C) (15) showed resonances at δ 8.96 (d, 4H), 8.61 (m, 4H), 8.05 (m, 2H), 7.0–7.7 (m, 15H, Ph) and 5.72 (s, 2H, CH₂Cl₂).

Preparation of $[MoI(CO)_3(bipy)(PPh_3)]/BF_4]$ (19)

To $[MoI_2(CO)_3(NCMe)_2]$ (0.5 g, 0.969 mmol) in a 1/1 mixture of CH_2CI_2/CH_3OH (20 cm³) PPh₃ (0.254 g, 0.969 mmol) was added with stirring under nitrogen. After 1 min bipy (0.151 g, 0.969 mmol) was added and the mixture stirred for 30 min. Na[BF₄] (0.1066 g, 0.969 mmol) was added in situ and stirring was continued for a further 30 min. The solvent was removed in vacuo and the complex redissolved in CH_2Cl_2 (20 cm³) followed by filtration through Celite under nitrogen. Removal of the solvent in vacuo gave the orange cationic complex [MoI(CO)₃(bipy)(PPh₃)][BF₄] (19), which was recrystallised from CH_2Cl_2/Et_2O (yield of pure product = 0.44 g, 56%) IR { $\nu(C=O)$ cm⁻¹} spectral data: (19) 2010, 1975 and 1925. ¹H NMR (CDCl₃, +20°C): (19) 9.6 (m, 2H), 9.14 (m, 2H), 8.73 (m, 2H), 8.17 (m, 2H), 7.40-7.71 (m, 15H, Ph).

Reaction of $[MoI_2(CO)_3(py)(PPh_3)]$ with py

 $[MoI_2(CO)_3(py)(PPh_3)]$ (0.5 g, 0.645 mmol) was dissolved in CH_2Cl_2 (15 cm³) with continuous stirring under a stream of dry nitrogen and py (0.051 g, 0.646 mmol) was added with continued stirring. After 5 min dropwise addition of diethyl ether caused complete precipitation of the brown crystalline cationic complex $[MoI(CO)_3-(py)_2(PPh_3)]I \cdot CH_2Cl_2$, which was recrystallised from CH_2Cl_2/Et_2O (yield of pure product = 0.365 g, 60%). Elemental analysis: Found: C, 41.0, H, 2.7; N, 2.6. $C_{32}H_{27}N_2Cl_2I_2O_3PMo$ calcd.: C, 40.9; H, 2.9; N, 3.0%. ¹H NMR spectrum (CDCl₃, +25°C) showed resonances at δ 8.92 (d, 4H), 8.60 (m, 4H), 8.04 (m, 2H), 6.95–7.8 (m, 15H, Ph) and 5.73 (s, 2H, CH_2Cl_2).

Acknowledgements

We thank Amax Speciality Metals UK.Ltd. for a generous gift of [Mo(CO)₆].

References

- 1 J.A. Connor, E.J. James, C. Overton and N. El. Muir, J. Chem. Soc., Dalton Trans., 225 (1984).
- 2 J.A. Connor and E.J. James, J. Organomet. Chem., 297 (1985) 301.
- 3 J.A. Connor, E.J. James, C. Overton, J.M.A. Walshe and R.A. Head, J. Chem. Soc., Dalton Trans., 511 (1986).
- 4 J.A. Connor and E.J. James, J. Organomet. Chem., 316 (1986) 79.
- 5 D.F. Lewis and S.J. Lippard, Inorg. Chem., 11 (1972) 621.
- 6 M. Novotny and S.J. Lippard, J. Chem. Soc., Chem. Commun., (1973) 202.
- 7 D.L. Lewis and S.J. Lippard, J. Am. Chem. Soc., 97 (1975) 2697.
- 8 C.T. Lam, M. Novotny, D.L. Lewis and S.J. Lippard, Inorg. Chem., 17 (1978) 2127.
- 9 C.W.R. Cornfield, L.M. Baltusis and S.J. Lippard, Inorg. Chem., 20 (1981) 922.

- 10 J.C. Dewan, C.M. Giandomenico and S.J. Lippard, Inorg. Chem., 20 (1981) 4049.
- 11 J.C. Dewan and S.J. Lippard, Inorg. Chem., 21 (1982) 1682.
- 12 C.M. Giandomenico, C.T. Lam and S.J. Lippard, J. Am. Chem. Soc., 104 (1982) 1263.
- 13 C. Carvana, C.M. Giandomenico and S.J. Lippard, Inorg. Chem., 21 (1982) 1860.
- 14 T.E. Wood, J.C. Deaton, J. Corning, R.E. Wild and R.A. Walton, Inorg. Chem., 19 (1980) 2614.
- 15 W.S. Mialki, R.E. Wild and R.A. Walton, Inorg. Chem., 20 (1981) 1380.
- 16 D.D. Klendworth, W.W. Weltes and R.A. Walton, Organometallics, 1 (1982) 336.
- 17 P.K. Baker, S.G. Fraser and E.M. Keys, J. Organomet. Chem., 309 (1986) 319.
- 18 See for example F.A. Cotton and G. Wilkinson (Eds.), Advanced Inorganic Chemistry, A Comprehensive Test, 4th edit., p. 71, John Wiley and Sons Ltd., 1980.
- 19 P.K. Baker and S.G. Fraser, Transition-Met. Chem., 12 (1987) 560.
- 20 P.K. Baker, S.G. Fraser and M.J. Snowden, Inorg. Chim. Acta, 148 (1988) 247.
- 21 M.H.B. Stiddard, J. Chem. Soc. A, (1962) 4712.
- 22 F.A. Cotton and B.F.G. Johnson, Inorg. Chem., 3 (1964) 1609.
- 23 J. Lewis and R. Whyman, J. Chem. Soc. A, (1967) 77.
- 24 R. Colton and C.J. Rix, Aust. J. Chem., 22 (1969) 305.
- 25 W.S. Tsang, D.W. Meek and A. Wojcicki, Inorg. Chem., 7 (1968) 1263.
- 26 J.R. Moss and B.L. Shaw, J. Chem. Soc. A, 595 (1970).
- 27 R. Colton, Coord. Chem. Rev., 6 (1971) 269 and ref. cited therein.
- 28 L. Bencze, J. Organomet. Chem., 37 (1972) C37.
- 29 A.D. Westland and N. Muriithi, Inorg. Chem., 12 (1973) 2356.
- 30 S.C. Tripathi, S.C. Srivastava and A.K. Shrimal, Inorg. Chim. Acta, 18 (1976) 231.
- 31 P.K. Baker and S.G. Fraser, Inorg. Chim. Acta, 116 (1986) L1.
- 32 K. Nakamoto, Infrared spectra of Inorganic and Coordination Compounds, John Wiley and Sons inc., New York, London, 1961.
- 33 M.G.B. Drew, Prog. Inorg. Chem., 23 (1977) 67.
- 34 M.B. Hursthouse, M.A. Thornton-Pett, J.A. Connor and C. Overton, Acta Cryst. C, 41 (1985) 184.